Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: covidwho-20244460

ABSTRACT

The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a critical role in the proteolytic processing of viral polyproteins and the dysregulation of the host immune response, providing a promising therapeutic target. Here, we report the structure-guide design of novel peptidomimetic inhibitors covalently targeting SARS-CoV-2 PLpro. The resulting inhibitors demonstrate submicromolar potency in the enzymatic assay (IC50 = 0.23 µM) and significant inhibition of SARS-CoV-2 PLpro in the HEK293T cells using a cell-based protease assay (EC50 = 3.61 µM). Moreover, an X-ray crystal structure of SARS-CoV-2 PLpro in complex with compound 2 confirms the covalent binding of the inhibitor to the catalytic residue cysteine 111 (C111) and emphasizes the importance of interactions with tyrosine 268 (Y268). Together, our findings reveal a new scaffold of SARS-CoV-2 PLpro inhibitors and provide an attractive starting point for further optimization.


Subject(s)
COVID-19 , Peptidomimetics , Humans , Peptidomimetics/pharmacology , HEK293 Cells , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
2.
J Virus Erad ; 9(2): 100327, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2328061

ABSTRACT

Introduction: The recent outbreak of SARS-CoV-2 has significantly increased the need to find inhibitors that target the essential enzymes for viral replication in host cells. This systematic review was conducted to identify potential inhibitors of SARS-CoV, MERS-CoV, and SARS-CoV-2 helicases that have been tested by in vitro methods. Their inhibitory mechanisms are discussed in this review, in addition to their cytotoxic and protective properties. Methods: The databases PUBMED/MEDLINE, EMBASE, SCOPUS, and Web of Science were searched using different combinations of the keywords "helicase", "nsp13", "inhibitors", "coronaviridae", "coronaviruses", "virus replication", "replication", and "antagonists and inhibitors". Results: A total of 6854 articles were identified. Thirty-one were included into this review. These studies reported on the inhibitory effects of 309 compounds on SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase activities measured by invitro methods. Helicase inhibitors were categorized according to the type of coronavirus and tested enzymatic activity, nature, approval, inhibition level, cytotoxicity, and viral infection protective effects. These inhibitors are classified according to the site of their interaction with coronavirus helicases into four types: zinc-binding site inhibitors, nucleic acid-binding site inhibitors, nucleotide-binding site inhibitors, and inhibitors with no clear interaction site. Conclusion: Evidence from in vitro studies suggests that helicase inhibitors have a high potential as antiviral agents. Several show good antiviral activity while maintaining moderate cytotoxicity. These inhibitors should be clinically investigated to determine their efficacy in treating coronavirus infections, particularly SARS-CoV-2.

3.
Journal of Bacteriology and Virology ; 52(4):149-159, 2022.
Article in English | EMBASE | ID: covidwho-2217281

ABSTRACT

The outbreak of COVID-19 has become a public health emergency of international concern;thus, it is important to not only develop drugs for treating COVID-19 but also develop a method for evaluating the therapeutic effect based on the characteristics of SARS-CoV-2 and its variants. To test the antiviral activity of a drug against COVID-19, in this study, we established and compared experimental conditions, such as the treatment time and mode of action (dose) of the therapeutic substance, and a test method to evaluate its effectiveness. We optimized an assay for testing antiviral activity by plaque reduction, tissue culture infectious dose 50, and quantitative RT-PCR. These methods were applied to test the antiviral efficacy of the therapeutic against SARS-CoV-2. Antiviral activity testing using in vitro assays against SARS-CoV-2 and its variants was assessed by measuring plaque-reducing or cytopathic effects in Vero-E6 cells. The in vitro assay was validated by evaluating the antiviral activity of remdesivir. Remdesivir reduced SARS-CoV-2 titer without detectable cytotoxicity and successfully inhibited viral replication in a dose-dependent manner. Therefore, we suggest this in vitro assay as an effective method for testing the antiviral activity for a potential repurposed drug against COVID-19 or rapid screening of therapeutic candidates. Copyright © 2022 Journal of Bacteriology and Virology.

4.
Front Pharmacol ; 13: 935399, 2022.
Article in English | MEDLINE | ID: covidwho-1969057

ABSTRACT

Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.

5.
Curr Med Chem ; 29(38): 5925-5948, 2022.
Article in English | MEDLINE | ID: covidwho-1910818

ABSTRACT

The COVID-19 outbreak caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to have high incidence and mortality rate globally. To meet the increasingly growing demand for new therapeutic drugs and vaccines, researchers are developing different diagnostic techniques focused on screening new drugs in clinical use, developing an antibody targeting a SARS-CoV-2 receptor, or interrupting infection/replication mechanisms of SARS-CoV-2. Although many prestigious research publications are addressing this subject, there is no open access platform where all experimental techniques for COVID-19 research can be seen as a whole. Many researchers have accelerated the development of in silico methods, high-throughput screening techniques, and in vitro assays. This development has played an important role in the emergence of improved, innovative strategies, including different antiviral drug development, new drug discovery protocols, combinations of approved drugs, and setting up new drug classes during the COVID-19 outbreak. Hence, the present review discusses the current literature on these modalities, including virtual in silico methods for instant ligand- and target-driven based techniques, nucleic acid amplification tests, and in vitro models based on sensitive cell cultures, tissue equivalents, organoids, and SARS-CoV-2 neutralization systems (lentiviral pseudotype, viral isolates, etc.). This pack of complementary tests informs researchers about the accurate, most relevant emerging techniques available and in vitro assays allow them to understand their strengths and limitations. This review could be a pioneer reference guide for the development of logical algorithmic approaches for new drugs and vaccine strategies against COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell Culture Techniques , High-Throughput Screening Assays/methods , Humans , Ligands
6.
Drug Discov Today ; 27(7): 1983-1993, 2022 07.
Article in English | MEDLINE | ID: covidwho-1773250

ABSTRACT

Drug repurposing is an appealing method to address the Coronavirus 2019 (COVID-19) pandemic because of the low cost and efficiency. We analyzed our in-house database of approved drug screens and compared their activity profiles with results from a severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) cytopathic effect (CPE) assay. The activity profiles of the human ether-à-go-go-related gene (hERG), phospholipidosis (PLD), and many cytotoxicity screens were found significantly correlated with anti-SARS-CoV-2 activity. hERG inhibition is a nonspecific off-target effect that has contributed to promiscuous drug interactions, whereas drug-induced PLD is an undesirable effect linked to hERG blockers. Thus, this study identifies preferred drug candidates as well as chemical structures that should be avoided because of their potential to induce toxicity. Lastly, we highlight the hERG liability of anti-SARS-CoV-2 drugs currently enrolled in clinical trials.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/adverse effects , Drug Repositioning/methods , Humans , Pandemics
7.
J Mol Liq ; 353: 118775, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1693094

ABSTRACT

The widespread outbreak of the novel coronavirus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the main health challenge worldwide. This pandemic has attracted the attention of the research communities in various fields, prompting efforts to discover rapid drug molecules for the treatment of the life-threatening COVID-19 disease. This study is aimed at investigating 4H-chromen-4-one scaffold-containing flavonoids that combat the SARS-CoV-2 virus using computational and in vitro approaches. Virtual screening studies of the molecule's library for 4H-chromen-4-one scaffold were performed with the recently reported coronavirus main protease (Mpro, also called 3CLpro) because it plays an essential role in the maturation and processing of the viral polyprotein. Based on the virtual screening, the top hit molecules such as isoginkgetin and afzelin molecules were selected for further estimating in vitro antiviral efficacies against SARS-CoV-2 in Vero cells. Additionally, these molecules were also docked with RNA-dependent RNA Polymerase (RdRp) to reveal the ligands-protein molecular interaction. In the in vitro study, isoginkgetin showed remarkable inhibition potency against the SARS-CoV-2 virus, with an IC50 value of 22.81 µM, compared to remdesivir, chloroquine, and lopinavir with IC50 values of 7.18, 11.63, and 11.49 µM, respectively. Furthermore, the complex stability of isoginkgetin with an active binding pocket of the SARS-CoV-2 Mpro and RdRp supports its inhibitory potency against the SARS-CoV-2. Thus, isoginkgetin is a potent leading drug candidate and needs to be used in in vivo trials for the treatment of SARS-CoV-2 infected patients.

8.
Med Chem ; 18(8): 871-883, 2022.
Article in English | MEDLINE | ID: covidwho-1631502

ABSTRACT

BACKGROUND: Chemokines are involved in several human diseases and different stages of COVID-19 infection. They play a critical role in the pathophysiology of the associated acute respiratory disease syndrome, a major complication leading to death among COVID-19 patients. In particular, CXC chemokine receptor 4 (CXCR4) was found to be highly expressed in COVID-19 patients. METHODS: We herein describe a computational workflow based on combining pharmacophore modeling and QSAR analysis towards the discovery of novel CXCR4 inhibitors. Subsequent virtual screening identified two promising CXCR4 inhibitors from the National Cancer Institute (NCI) list of compounds. The most active hit showed in vitro IC50 value of 24.4 µM. CONCLUSION: These results proved the validity of the QSAR model and associated pharmacophore models as means to screen virtual databases for new CXCR4 inhibitors as leads for the development of new COVID-19 therapies.


Subject(s)
COVID-19 Drug Treatment , Quantitative Structure-Activity Relationship , Receptors, CXCR4 , Humans , Ligands , Molecular Docking Simulation , Receptors, CXCR4/antagonists & inhibitors
9.
Drug Discov Today ; 26(10): 2439-2444, 2021 10.
Article in English | MEDLINE | ID: covidwho-1242920

ABSTRACT

In response to the ongoing coronavirus disease 2019 (COVID-19) pandemic, a panel of assays has been developed and applied to screen collections of approved and investigational drugs for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity in a quantitative high-throughput screening (qHTS) format. In this review, we applied data-driven approaches to evaluate the ability of each assay to identify potential anti-SARS-CoV-2 leads. Multitarget assays were found to show advantages in terms of accuracy and efficiency over single-target assays, whereas target-specific assays were more suitable for investigating compound mechanisms of action. Moreover, strict filtering with counter screens might be more detrimental than beneficial in identifying true positives. Thus, developing novel HTS assays acting simultaneously against multiple targets in the SARS-CoV-2 life cycle will benefit anti-COVID-19 drug discovery.


Subject(s)
COVID-19 Drug Treatment , Drug Development/trends , High-Throughput Screening Assays/trends , Antiviral Agents/pharmacology , Drug Discovery , Humans , Pandemics , SARS-CoV-2
10.
Front Med (Lausanne) ; 8: 615099, 2021.
Article in English | MEDLINE | ID: covidwho-1241173

ABSTRACT

Diagnostic testing plays a critical role in addressing the coronavirus disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Rapid and accurate diagnostic tests are imperative for identifying and managing infected individuals, contact tracing, epidemiologic characterization, and public health decision making. Laboratory testing may be performed based on symptomatic presentation or for screening of asymptomatic people. Confirmation of SARS-CoV-2 infection is typically by nucleic acid amplification tests (NAAT), which requires specialized equipment and training and may be particularly challenging in resource-limited settings. NAAT may give false-negative results due to timing of sample collection relative to infection, improper sampling of respiratory specimens, inadequate preservation of samples, and technical limitations; false-positives may occur due to technical errors, particularly contamination during the manual real-time polymerase chain reaction (RT-PCR) process. Thus, clinical presentation, contact history and contemporary phyloepidemiology must be considered when interpreting results. Several sample-to-answer platforms, including high-throughput systems and Point of Care (PoC) assays, have been developed to increase testing capacity and decrease technical errors. Alternatives to RT-PCR assay, such as other RNA detection methods and antigen tests may be appropriate for certain situations, such as resource-limited settings. While sequencing is important to monitor on-going evolution of the SARS-CoV-2 genome, antibody assays are useful for epidemiologic purposes. The ever-expanding assortment of tests, with varying clinical utility, performance requirements, and limitations, merits comparative evaluation. We herein provide a comprehensive review of currently available COVID-19 diagnostics, exploring their pros and cons as well as appropriate indications. Strategies to further optimize safety, speed, and ease of SARS-CoV-2 testing without compromising accuracy are suggested. Access to scalable diagnostic tools and continued technologic advances, including machine learning and smartphone integration, will facilitate control of the current pandemic as well as preparedness for the next one.

11.
Emergent Mater ; 4(1): 101-117, 2021.
Article in English | MEDLINE | ID: covidwho-1169073

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) is by far the worst pandemic disease in the current millennium. The first human-to-human transmission was observed in December 2019 in China and is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has infected millions of people within months across the globe. SARS-CoV-2 is a spike protein enveloped virus with particle-like characteristics and a diameter of 60-140 nm. Real-time PCR, reverse transcriptase PCR, isothermal PCR, immunological-based detection technique and nano-based diagnostic system have been explained for the identification and differentiation of different types of virus including SARS-COV-2. Synthetic nanoparticles can closely mimic the virus and interact strongly with its virulent proteins due to their morphological similarities. Some of the antiviral nanomaterials are also discussed, for example zinc oxide nanoparticle is an antiviral agent with a tetrapod morphology that mimics the cell surface by interacting with the viral capsid. It suppressed the viral proteins upon UV radiation due to reaction caused by photocatalysis. Hence, nanoparticle-based strategies for tackling viruses have immense potential. The second part of the review points to the latest in vitro and in vivo procedures for screening viral particles and the usage of nanoparticles in diagnostic and therapeutics. This would be beneficial for early detection and assists for the safe and effective therapeutic management of COVID-19.

12.
Virol J ; 17(1): 190, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-945221

ABSTRACT

BACKGROUND: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of infections worldwide. While the search for an effective antiviral is still ongoing, experimental therapies based on repurposing of available antivirals is being attempted, of which HIV protease inhibitors (PIs) have gained considerable interest. Inhibition profiling of the PIs directly against the viral protease has never been attempted in vitro, and while few studies reported an efficacy of lopinavir and ritonavir in SARS-CoV-2 context, the mechanism of action of the drugs remains to be validated. METHODS: We carried out an in-depth analysis of the efficacy of HIV PIs against the main protease of SARS-CoV-2 (Mpro) in cell culture and in vitro enzymatic assays, using a methodology that enabled us to focus solely on any potential inhibitory effects of the inhibitors against the viral protease. For cell culture experiments a dark-to-bright GFP reporter substrate system was designed. RESULTS: Lopinavir, ritonavir, darunavir, saquinavir, and atazanavir were able to inhibit the viral protease in cell culture, albeit in concentrations much higher than their achievable plasma levels, given their current drug formulations. While inhibition by lopinavir was attributed to its cytotoxicity, ritonavir was the most effective of the panel, with IC50 of 13.7 µM. None of the inhibitors showed significant inhibition of SARS-CoV-2 Mpro in our in vitro enzymatic assays up to 100 µM concentration. CONCLUSION: Targeting of SARS-CoV-2 Mpro by some of the HIV PIs might be of limited clinical potential, given the high concentration of the drugs required to achieve significant inhibition. Therefore, given their weak inhibition of the viral protease, any potential beneficial effect of the PIs in COVID-19 context might perhaps be attributed to acting on other molecular target(s), rather than SARS-CoV-2 Mpro.


Subject(s)
Coronavirus 3C Proteases/metabolism , HIV Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Cell Survival/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Proteolysis/drug effects , SARS-CoV-2/drug effects
13.
Eur J Med Chem ; 206: 112702, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-724946

ABSTRACT

SARS-CoV-2 3C-like protease is the main protease of SARS-CoV-2 and has been considered as one of the key targets for drug discovery against COVID-19. We identified several N-substituted isatin compounds as potent SARS-CoV-2 3C-like protease inhibitors. The three most potent compounds inhibit SARS-CoV-2 3C-like protease with IC50's of 45 nM, 47 nM and 53 nM, respectively. Our study indicates that N-substituted isatin compounds have the potential to be developed as broad-spectrum anti-coronavirus drugs.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Isatin/therapeutic use , Protease Inhibitors/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases , Humans , Isatin/analogs & derivatives , Isatin/chemical synthesis , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , SARS-CoV-2 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL